with this, each representation of a rod and/or of a layer group engenders a certain representation of all those space groups which belong to corresponding layer and rod classes. This is a suitable regularity for systemization of representations (Kopský, 1988b). Accordingly, there also exists isomorphism of lattices of subgroups of subperiodic groups and of sublattices of 'partially equitranslational' subgroups in the lattices of subgroups of corresponding space groups (Kopský, 1987). This relationship is quite analogous to that between the lattices of subgroups of point groups and lattices of equitranslational subgroups of space groups as given by Ascher (1968).

Reducibility can also be introduced for the subperiodic groups themselves; this can be done for ordinary as well as for contracted subperiodic groups (Litvin \& Kopský, 1987). As we can see, there are many viewpoints which have to be considered in connection with the extension of the reducibility concept to the Euclidean motion groups. Points 2 and 3 show the usefulness of the concept of reducibility and of the classification of space groups into subperiodic classes even on the level of groups up to three dimensions. Such a classification has been performed and will soon be published.

References

AsCHER, E. (1968). Lattices of Equi-Translation Subgroups of the Space Groups. Internal Report. Battelle Institute, Carouge, Switzerland.
Ascher, E. \& Janner, A. (1965). Helv. Phys. Acta, 38, 551-572.
Ascher, E. \& Janner, A. (1968/69). Commun. Math. Phys. 11, 138-167.
Boyle, L. L. \& Lawrenson, J. E. (1973). Acta Cryst. A29, 353-357.
Brown, H., Bülow, R., Neubüser, J., Wondratschek, H. \& Zassenhaus, H. (1978). Crystallographic Groups of FourDimensional Space. New York: Wiley.
Cochran, W. (1952). Acta Cryst. 5, 630-633.
Giacovazzo, C. (1974). Acta Cryst. A30, 390-395.
HAHN, T. (1987). Editor. International Tables for Crystallography. Vol. A. Dordrecht: Reidel. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Hirshfeld, F. L. (1968). Acta Cryst. A24, 301-311.
Janovec, V., Kopský, V. \& Litvin, D. B. (1988). Z. Kristallogr. 185, 282.
KOpský, V. (1987). Czech. J. Phys. B37, 785-808.
KOpSký, V. (1988a). Czech. J. Phys. B38, 945-967.
KOPSKÝ, V. (1988b). Int. J. Comput. Math. 16, 493-505.
Kopský, V. (1989). Acta Cryst. A45, 805-815.
Kopský, V. (1990). Czech. J. Phys. In the press.
Litvin, D. B. \& Kopský, V. (1987). J. Phys. A: Math. Nucl. Gen. 20, 1655-1659.
Maxwell, G. (1975). J. Algebra, 35, 159-177.
Schwarzenberger, R. L. E. (1980). N-Dimensional Crystallography. San Francisco: Pitman.

Theoretical Considerations on Two-Beam and Multi-Beam Grazing-Incidence X-ray Diffraction: Nonabsorbing Cases

By Hsueh-Hsing Hung and Shih-Lin Chang
Department of Physics, National Tsing-Hua University, Hsin-chu, Taiwan 30043

(Received 24 January 1989; accepted 7 July 1989)

Abstract

Two-beam and symmetric three- and four-beam graz-ing-incidence X-ray diffraction (GIXD) by crystals without absorption are studied based on the dynamical theory of X-ray diffraction. For two-beam cases, a new geometrical scheme is given to reveal graphically the excitation of the dispersion surface. For symmetric three- and four-beam cases, the expressions for specularly reflected and forward diffracted intensities are derived analytically. Results from the numerical calculations for the diffracted intensities, the penetration depths, the coordinates of the dispersion surface and the mode excitations are also presented for two-, three- and four-beam GIXD.

1. Introduction

Grazing incidence of X-ray scattering (GIXS), suggested by Marra, Eisenberger \& Cho (1979), has been
used as an experimental technique for probing the structures of crystal surfaces and overlayer interfaces. Its applications have recently been reviewed in an article by Fuoss, Liang \& Eisenberger (1989). Theoretically, Vineyard (1982) described GIXS with a distorted-wave approximation in the kinematical theory of X-ray diffraction. In terms of the ordinary dynamical theory of Ewald (1917) and Laue (1931), Afanas'ev \& Melkonyan (1983) worked out a formulation for the dynamical diffraction of X-rays under specular reflection conditions (GIXD - grazingincidence X-ray diffraction) and Aleksandrov, Afanas'ev \& Stepanov (1984) extended this formalism to include the diffraction geometry of thin surface layers. Subsequently, the properties of wavefields constructed during specularly diffracted reflections have been discussed in more detail by Cowan (1985) and Sakata \& Hashizume (1987). Meanwhile, a geometrical interpretation of GIXS based on a three-
(C) 1989 International Union of Crystallography
dimensional dispersion surface has been proposed by Hoche, Brümmer \& Nieber (1986).

In this paper we briefly review the dynamical theory of GIXD and give a new interpretation of the geometry of GIXD in momentum space. The dynamical theory of X-ray diffraction is then extended to multi-beam GIXD. The expressions of the forward reflected and specularly diffracted intensities are derived, as examples, for symmetric three-beam and four-beam GIXD in germanium crystals. For simplicity, absorption is not considered in the derivation. The penetration depths, excitation of mode of propagation as well as the diffracted intensities as a function of the incident angular position are also presented.

2. Dynamical theory of two-beam GIXD

(A) Brief review of the theoretical background

In an ordinary Bragg diffraction, there are two reciprocal-lattice points, say O and H, on the surface of an Ewald sphere. O and H represent the direct (incident) and the H-reflected beams, respectively. This is known as two-beam diffraction. When the angle of incidence is set in the vicinity of the critical angle of external total reflection (grazing incidence), more than two diffracted/reflected beams are generated because of the surface specular reflection. Fig. 1 is a schematic of grazing-incidence X-ray diffraction. For simplicity, we consider here only the σ polarized incident X-ray E_{0}, perpendicular to the plane of incidence, in an ideally perfect crystal of infinite thickness. Under the conditions of specular reflection, the incident grazing angle φ is small, i.e. $\varphi \sim\left|\chi_{0}\right|^{1 / 2} \ll 1$, where $\chi_{0} / 4 \pi$ is the electric susceptibility of the direct reflection. The internal Bloch waves D_{0} and D_{h} generated by diffraction are reflected from the crystal surface to give the specularly reflected and diffracted wavefields E_{0}^{S} and $E_{h}^{S} . \mathbf{k}, \mathbf{K}_{0}, \mathbf{K}_{h}, \mathbf{k}_{0}$ and \mathbf{k}_{h} are the wavevectors of $\mathbf{E}_{0}, \mathbf{D}_{0}, \mathbf{D}_{h}, \mathbf{E}_{0}^{s}$ and \mathbf{E}_{h}^{S}, respectively. φ_{h} is the angle between \mathbf{k}_{h} and the crystal surface. \mathbf{H} is the reciprocal-lattice vector of the H reflection. ψ is the misorientation angle between the H planes and the crystal surface normal. $\psi \neq 0$ is referred to as an inclined geometric scheme. Although there are several reflected and diffracted beams generated for GIXD, only two reciprocal-lattice points are involved. We denote here this GIXD as a 'two-beam'

Fig. 1. Beam geometry of GIXD in real space.
case. Hereafter, N-beam GIXD will be used to denote the diffraction in which N reciprocal-lattice points are involved.

The dynamical theory of two-beam GIXD has been formulated by Afanas'ev \& Melkonyan (1983) within the framework of the Ewald-Laue theories. In order to provide a theoretical background for further derivation of multi-beam GIXD, we summarize the twobeam theory as follows:

For surface specular reflections, φ and ψ are very small, i.e. $\varphi, \psi \ll 1$. Under this condition, the angle of the specularly diffracted reflection φ_{h} can be expressed as

$$
\begin{equation*}
\varphi_{h}=(\varphi+\beta)^{2}-\alpha_{h}, \tag{1}
\end{equation*}
$$

where α_{h} is the angular deviation from the exact Bragg angle θ_{B} and β is the effective misorientation angle. Thus

$$
\begin{align*}
\alpha_{h} & =\left[(\mathbf{k}+\mathbf{H})^{2}-k^{2}\right] / k^{2} \tag{2}\\
\beta & =2 \psi \sin \theta_{B} . \tag{3}
\end{align*}
$$

k, equal to $1 / \lambda$, is the modulus of the wavevector in vacuum, λ being the wavelength of the X -ray used.

As is usual, the diffraction of X-rays from a crystal is described by the fundamental equation of wavefields. By solving this equation as an eigenvalue problem and employing the boundary conditions, the expressions for the wavefield amplitudes and the reflected intensities can be derived.

When the conditions $\psi=0$ (symmetric geometry), $\alpha_{h}=0$ (at the exact Bragg diffraction position) and $\chi_{h}=\chi_{\bar{n}}$ (nonabsorbing centrosymmetric crystals) are fulfilled, the following expressions are obtained for the absolute wavefield amplitudes:

$$
\begin{gather*}
D_{0}^{(1)}=-D_{h}^{(1)}=\left(\sin \varphi / C_{1}\right) E_{0} \tag{4a}\\
D_{0}^{(2)}=D_{h}^{(2)}=\left(\sin \varphi / C_{2}\right) E_{0} \tag{4b}\\
E_{0}^{S}=-E_{0}+\left(D_{0}^{(1)}+D_{0}^{(2)}\right) \\
=\left\{\left[\sin ^{2} \varphi-\left(\sin ^{2} \varphi-\sin ^{2} \theta_{1}\right)^{1 / 2}\right.\right. \\
\left.\left.\times\left(\sin ^{2} \varphi-\sin ^{2} \theta_{2}\right)^{1 / 2}\right] / C_{1} C_{2}\right\} E_{0}, \tag{5a}\\
E_{h}^{S}=D_{h}^{(1)}+D_{h}^{(2)}=-\left[\left(C_{2}-C_{1}\right) \sin \varphi / C_{1} C_{2}\right] E_{0}, \tag{5b}
\end{gather*}
$$

where the characteristic angles are defined as

$$
\left.\begin{array}{l}
\sin \theta_{1} \tag{6}\\
\sin \theta_{2}
\end{array}\right\}=\left(\left|\chi_{0}\right| \mp\left|\chi_{h}\right|\right)^{1 / 2}
$$

and

$$
\begin{equation*}
C_{i}=\sin \varphi+\left(\sin ^{2} \varphi-\sin ^{2} \theta_{i}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

χ_{h} is equal to ΓF_{h}, where F_{h} is the structure factor of the H reflection and $\Gamma=-r_{e} \lambda^{2} / \pi V . r_{e}$ is the classical radius of the electron and V is the volume of the crystal unit cell.

The normalized intensities of the specular reflections are then equal to

$$
\begin{align*}
& P_{0}^{S}(\varphi)=\left|E_{0}^{S}\right|^{2} /\left|E_{0}\right|^{2} \tag{8}\\
& P_{h}^{S}(\varphi)=\left(\left|E_{h}^{S}\right|^{2} /\left|E_{0}\right|^{2}\right)\left(\varphi_{h} / \varphi\right) . \tag{9}
\end{align*}
$$

In Fig. 2, the $P_{0}^{S}(\varphi)$ and $P_{h}^{S}(\varphi)$ are plotted for $\mathrm{Ge}(000)(220)$ GIXD for $\lambda=3 \cdot 463683 \AA$. The critical angles θ_{1} and θ_{2} are 6.542 and 15.962 mrad , respectively. The corresponding normalized reflection intensities are $P_{000}^{S}\left(\theta_{1}\right)=0 \cdot 1680, P_{000}^{S}\left(\theta_{2}\right)=0.2735$, $P_{220}^{S}\left(\theta_{1}\right)=0.8320$, and $P_{220}^{S}\left(\theta_{2}\right)=0 \cdot 2275$. Note that $P_{000}^{S}(\varphi)+P_{220}^{S}(\varphi)=1$ for $\varphi \leq \theta_{1}$.
(B) New geometrical interpretation of the two-beam dispersion surface
Hoche, Brümmer \& Nieber (1986) have given a geometrical interpretation of the two-beam GIXD in terms of the dispersion surface. Figs. 3(a) and (b), adapted from their paper, are the two sections of the dispersion surface perpendicular and parallel to the crystal surface. From equation (1) of their paper, the relations among the tie points A_{1} and A_{2}, the Lorentz point L_{0} and the Laue point L_{a} are $\quad M L_{a}=k \cos \theta_{B}, \quad M L_{0}=n k \cos \theta_{B}, \quad M A_{1}=$ $\left(n-\chi_{h} / 2\right) k \cos \theta_{B}, M A_{2}=\left(n+\chi_{h} / 2\right) k \cos \theta_{B}$, with $n=1+\chi_{0} / 2$. The distance $A_{1} A_{2}$ is equal to $\left|\chi_{h}\right| k \cos \theta_{B}$. This is different from the value

$$
\begin{equation*}
A_{1} A_{2}=k\left|\chi_{n}\right| / \cos \theta_{B} \tag{10}
\end{equation*}
$$

in the ordinary dynamical theory of X-ray diffraction in a bulk crystal.

To clarify this inconsistency, we consider the azimuthal rotation of the crystal around the reciprocal-lattice vector \mathbf{H}. The relation between the incident angle φ and the azimuthal tilting angle γ

Fig. 2. Two-beam $\mathrm{Ge}(000)$ (220) GIXD for $3 \cdot 463683 \AA$: (a) calculated intensities; (b) dispersion surface; (c) mode excitations; and (d) penetration depths.
(see Fig. 3b) is

$$
\begin{equation*}
\sin \varphi=\cos \theta_{B} \sin \gamma . \tag{11}
\end{equation*}
$$

$\varphi=0$ as $\gamma \rightarrow 0$. Assume that $\gamma=\gamma_{1}$ and $\gamma=\gamma_{2}$ as $\varphi \rightarrow \theta_{1}$ and $\varphi \rightarrow \theta_{2}$, respectively. From Fig. 4(a), a section of the dispersion surface of the ordinary two-beam diffraction near the Lorentz point, the distance $P Q$ between the incident wavefront Σ_{0} in vacuum and the wavefront Σ_{0}^{\prime} in the crystal is $P Q=k \chi_{0} / 2$. The geometrical relations among the points P, Q, the tie points A_{1}, A_{2}, the Lorentz point L_{0} and the Laue point L_{a} are

$$
\begin{gather*}
A_{1} Q=k \chi_{h} / 2, \quad A_{1} L_{a}=k\left(\chi_{0}-\chi_{h}\right) /\left(2 \cos \theta_{B}\right), \\
L_{0} L_{a}=k \chi_{0} /\left(2 \cos \theta_{B}\right) . \tag{12}
\end{gather*}
$$

The projection of Fig. $4(a)$ onto the plane perpendicular to the crystal surface is shown in Fig. 4(b). E is the entrance point on the incident wavefront whose wavevector satisfies Bragg's law: $\mathbf{k}_{h}=\mathbf{k}_{0}+\mathbf{H}$. According to Figs. $4(a)$ and (b), the distance $A_{1} A_{2}$ has its usual value as

$$
\begin{equation*}
A_{1} A_{2}=\left|M A_{1}-M A_{2}\right|=k \chi_{h} / \cos \theta_{B} \tag{13}
\end{equation*}
$$

where the relations

$$
\begin{align*}
& \cos \gamma_{1}=1-\left(\chi_{0}-\chi_{h}\right) /\left(2 \cos ^{2} \theta_{B}\right) \\
& \cos \gamma_{2}=1-\left(\chi_{0}^{-}+\chi_{h}\right) /\left(2 \cos ^{2} \theta_{B}\right) \tag{14}
\end{align*}
$$

have been employed in deriving (13). From (13) and

Fig. 3. (a) Section of the dispersion surface in the crystal surface; (b) section of the dispersion surface perpendicular to the crystal surface and bisecting the vector $\mathbf{O H}$.
(14) and $\gamma_{1}, \gamma_{2} \ll 1$, we arrive at the same expressions for θ_{1} and θ_{2}, i.e. $\sin \theta_{1} \simeq\left(\left|\chi_{0}-\chi_{h}\right|\right)^{1 / 2}$ and $\sin \theta_{2} \simeq$ $\left(\left|\chi_{0}+\chi_{h}\right|\right)^{1 / 2}$. The geometrical relations given in (13) should be consistent with the ordinary two-beam dynamical theory.

Moreover, the excitation of the dispersion surface with respect to the incident φ angle in two-beam GIXD can also be depicted geometrically in Fig. 4(b). Referring to Afanas'ev \& Melkonyan (1983), we see that the dispersion equation can be written, in terms of the accommodation δ, normal to the crystal surface, as

$$
\begin{equation*}
\delta^{2}-2 \delta \varphi=u^{2}-\varphi^{2} \tag{15}
\end{equation*}
$$

or, more precisely,

$$
\begin{equation*}
\delta^{2}-2 \delta \sin \varphi=\sin ^{2} u-\sin ^{2} \varphi \tag{16}
\end{equation*}
$$

where u, a matching parameter of the wavevectors inside and outside the crystal at the crystal surface, is defined as

$$
\begin{equation*}
u=K_{0 z} / k \tag{17}
\end{equation*}
$$

$K_{0 z}$ is the vector component of K_{0} perpendicular to the crystal surface. The permitted accommodation with $\operatorname{Im}(u)>0$ is

$$
\begin{equation*}
\delta_{i}(\varphi)=\sin \varphi-\sin u^{(i)} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\sin u^{(i)}=K_{0 z} / k=\left(\sin ^{2} \varphi-\sin ^{2} \theta_{i}\right)^{1 / 2} \sim\left(\varphi^{2}-\theta_{i}^{2}\right)^{1 / 2} \tag{19}
\end{equation*}
$$

Fig. 4. (a) Section of the dispersion surface in the plane of incidence for a two-beam crystal diffraction; (b) geometrical representation for the excitation of the dispersion surface in two-beam GIXD.

Im (u) stands for the imaginary parts of u. The superscript and subscript i indicate the i mode. The angle θ can also be defined as

$$
\cos \theta=K_{0} / k
$$

namely,

$$
-2 \varepsilon_{0}=-\left(K_{0}^{2}-k^{2}\right) / k^{2}=\sin ^{2} \theta
$$

By considering the cosine rule for the triangle $B E M$ and the relation $A E=k \cos \theta_{B} \sin \gamma=k \sin \varphi \simeq k \varphi$, it can be shown that, for a given entrance point E,

$$
\begin{equation*}
\overline{B E}=k \delta, \quad \overline{A B}=k u \tag{20}
\end{equation*}
$$

This indicates that for $\theta_{1}<\varphi<\theta_{2}$, the incident wave from the entrance point E excites the branch $A_{1} N_{1}$ of the dispersion surface at the point B. Since $\overline{B E}$ is perpendicular to the crystal surface, $\overline{B E}$ is therefore the resonance failure $k \delta_{1}$. The difference between $A E$ and $B E$ is then equal to the component $K_{0 z}$. Since $A E$ does not intersect the $\operatorname{arc} A_{2} N_{2}, u^{(2)}=0$, and so $k \delta_{2}=k \varphi$. For $\varphi<\theta_{1}, u^{(1)}=u^{(2)}=0, k \delta_{1}=k \delta_{2}=k \varphi$. For $\varphi>\theta_{2}, A E$ always intersects with the $\operatorname{arcs} A_{1} N_{1}$ and $A_{2} N_{2}$, say at B_{1} and B_{2}. The resonance failures are $k \delta_{1}=B_{1} E$ and $k \delta_{2}=B_{2} E$. Clearly, those modes with $k \delta$ linearly proportional to φ are envanescent waves. Others are transmission waves.

3. Theoretical considerations on \boldsymbol{N}-beam symmetric GIXD

Consider a general N-beam GIXD (O, H, G, Q), where the N reciprocal-lattice vectors lie in a plane parallel to the crystal surface ($\psi=0$). For a nontrivial N-beam GIXD situation, the wavevectors involved are not exactly coplanar. It will be shown later that the wavevectors must be slightly off the crystal surface so that the surface reflected beams have appreciable intensities.

For simplicity, the following assumptions are made for N-beam GIXD: (i) no misorientation between the atomic planes and the crystal surface normal, $\psi=0$; (ii) no absorption, i.e. $\chi_{h}=\left|\chi_{h}\right|$; (iii) for centrosymmetric crystals, $\chi_{\bar{h}}=\chi_{h}$; (iv) the crystal always satisfies Bragg's condition for the H reflection but is subject to an azimuthal tilting γ around the \mathbf{H} vector, i.e. $\quad \alpha_{h}=0, \quad \varphi_{h}=\varphi, \quad 2 \varepsilon_{h}=\left(K_{h}^{2}-k^{2}\right) / k^{2}=2 \varepsilon_{0} \quad$ and $\sin \varphi=\cos \theta_{h} \sin \gamma$.

In the following, symmetric three- and four-beam GIXD are considered separately.
(A) Three-beam case: Ge (000)(220)(202) for $\lambda=$ $3.464 \AA$. Consider the three-beam case (O, H, G) of a germanium crystal with $O=(000), H=(220)$, and $G=(202)$. The geometry in reciprocal space is shown in Fig. $5(a) . C$ is the center of the triangle $O H G$. The point M is at the middle of the reciprocal-lattice vector $\mathbf{O H}$ of the H reflection. The semicircle $E_{1} E_{2}$ is the locus of the Laue points rotating around $\mathbf{O H}$
of the two-beam H reflection, so that $E O=E H=k$, $M E=k \cos \theta_{B}$. The azimuthal angle of rotation around $\mathbf{O H}$ is $\gamma=\angle E M C$. EP is perpendicular to the plane $O H G$, parallel to the crystal surface. T is a tie point such that $E T=k \delta$. The wavevectors inside the crystal are $\mathbf{K}_{0}=\mathbf{k}_{0}+k \delta \hat{\mathbf{z}}=\mathbf{T O}, \mathbf{K}_{h}=\mathbf{k}_{h}+k \delta \hat{\mathbf{z}}=\mathbf{T H}$, and $\mathbf{K}_{g}=\mathbf{k}_{0}+k \delta \mathbf{z}=\mathbf{T G}$. The angles of incidence and of reflection are $\varphi=\angle E O P, \varphi_{h}=\angle E H P$, and $\varphi_{g}=$ $\angle N G P$, respectively. The arc $N A$ is the wavefront of the G-reflected wave in vacuum. $\overline{E_{3} C}$ is normal to the crystal surface $O H G$ and $E_{3} G=E_{3} O=E_{3} H=k$. E_{3} is therefore the three-beam Laue point. The corresponding angles of incidence and azimuthal angle are $\varphi_{3}=\angle E_{3} O C$ and $\gamma_{3}=\angle E_{3} M C$, respectively. At point $A, \varphi_{g}=0$. The corresponding azimuthal angle γ_{Δ} and incident angle φ_{Δ} can be calculated from the relations

$$
\begin{align*}
& \cos \gamma_{\Delta}=3 \cos \gamma_{3}-1 / \cos \theta_{B} \tag{21a}\\
& \sin \varphi_{\Delta}=\cos \theta_{B} \sin \gamma_{\Delta} \tag{21b}
\end{align*}
$$

From Fig. 5(a), the parameters u and v are defined as

$$
\begin{align*}
& \sin u=\sin \angle T O P=K_{0 z} / K \tag{22}\\
& \sin v=\sin \angle T G P=K_{g z} / K \tag{23}
\end{align*}
$$

From the triangles $E_{3} M O, C M O$ and $E_{3} O C$, the following relations are obtained:

$$
\begin{align*}
& \sin \theta_{B} \sin \angle M E_{3} O=\sin (\pi / 3) \cos \varphi_{3} \tag{24}\\
& \cos \gamma_{3}=\tan \theta_{B} / \tan (\pi / 3) \tag{25}
\end{align*}
$$

The Bragg condition then takes the form

$$
\begin{equation*}
\lambda=2 d \sin (\pi / 3) \cos \varphi_{3} \tag{26}
\end{equation*}
$$

Fig. 5. (a) Schematic representation of a three-beam GIXD in reciprocal space; (b) definition of the polarization unit vectors of the three-beam case: $\hat{\boldsymbol{\pi}}_{0}$ and $\hat{\boldsymbol{\pi}}_{H}$ normal to $\hat{\boldsymbol{\sigma}}_{0}$ and $\hat{\boldsymbol{\sigma}}_{H}$ lie in the plane $O E H$.
where $\pi / 3$ is the Bragg angle for a wavevectorcoplanar symmetric three-beam GIXD. Equations (24) and (26) imply that for the non-coplanar threebeam diffraction, $\theta_{B}<\pi / 3$ and $\lambda<3 \cdot 46481 \AA$. Since φ is in the range $0 \sim 50 \mathrm{mrad}, \varphi_{3}$ can be chosen in the same angular range. Once φ_{3} is fixed, the corresponding wavelength is then determined. Although φ_{3} is small, the non-coplanar characteristics of the wavevectors introduce the correlation between σ and π-polarized wavefields. This can be understood directly from the following fundamental equation of wavefields, where both σ and π polarization are considered:

$$
\left[\begin{array}{cccccc}
\chi_{0}-2 \varepsilon_{0} & 0 & P_{\sigma} \chi_{\bar{h}} & 0 & d_{2} \chi_{\bar{g}} & 0 \tag{27}\\
0 & \chi_{0}-2 \varepsilon_{0} & 0 & P_{\pi} \chi_{\bar{h}} & d_{1} \chi_{\bar{q}} & d_{3} \chi_{\bar{z}} \\
P_{\sigma} \chi_{h} & 0 & \chi_{0}-2 \varepsilon_{0} & 0 & d_{2} \chi_{h-g} & 0 \\
0 & P_{\pi} \chi_{h} & 0 & \chi_{0}-2 \varepsilon_{0} & d_{1}^{\prime} \chi_{h-g} & d_{3}^{\prime} \chi_{h-g} \\
d_{2} \chi_{g} & d_{1} \chi_{g} & d_{2} \chi_{g-h} & d_{1}^{\prime} \chi_{g-h} & \chi_{0}-2 \varepsilon_{g} & 0 \\
0 & d_{3} \chi_{g} & 0 & d_{3}^{\prime} \chi_{g-h} & 0 & \chi_{0}-2 \varepsilon_{g}
\end{array}\right]\left[\begin{array}{c}
E_{c 0} \\
E_{\pi 0} \\
E_{c h} \\
E_{\pi h} \\
E_{c g} \\
E_{\pi g}
\end{array}\right]=[0] .
$$

For simplicity, we assume $E_{\sigma 0}=E_{0}$ and $E_{\pi 0}=0$. The polarization factors in (27) are
$P_{\sigma}=\hat{\boldsymbol{\sigma}}_{0} \cdot \hat{\boldsymbol{\sigma}}_{H}=1$
$P_{\pi}=\hat{\pi}_{0} \cdot \hat{\pi}_{H}=\cos 2 \theta_{B}$
$d_{1}=\hat{\pi}_{0} \cdot \hat{\boldsymbol{\sigma}}_{G}=\hat{\pi}_{H} \cdot \hat{\boldsymbol{\sigma}}_{G}=d_{1}^{\prime}=\sin (\pi-\varphi) \sin \theta_{B}$
$d_{2}=\hat{\boldsymbol{\sigma}}_{0} \cdot \hat{\boldsymbol{\sigma}}_{G}=\hat{\boldsymbol{\sigma}}_{H} \boldsymbol{\sigma}_{G}=\cos (\pi-\varphi)$
$d_{3}=\hat{\pi}_{0} \cdot \hat{\pi}_{G}=\hat{\pi}_{H} \cdot \hat{\pi}_{G}=d_{3}^{\prime}=\cos 2 \theta_{B}=P_{\pi}$
$p($ others $)=0$.
The unit vectors $\hat{\boldsymbol{\sigma}}$'s and $\hat{\pi}$'s are defined in Fig. 5(b), where $\varphi=\angle M E G$ and $\varphi_{g}^{\prime}=\angle E G M$, and $\hat{\boldsymbol{\sigma}}_{G}$ and $\hat{\pi}_{G}$ are perpendicular to \mathbf{k}_{g} and $E G M$, respectively. Equation (27) can be written alternatively as

$$
\begin{align*}
& \left(\xi_{0}+P_{\sigma} \chi_{h}\right)\left(\xi_{0}+P_{\pi} \chi_{h}\right) \\
& \quad\left|\begin{array}{cccc}
\xi_{h}-P_{\sigma} \chi_{h} & -2 d_{2} \chi_{h} & 0 & 0 \\
-2 d_{2} \chi_{h} & 2 \xi_{g} & -2 d_{1} \chi_{h} & 0 \\
0 & -2 d_{1} \chi_{h} & \xi_{h}-P_{\pi} \chi_{h} & -2 P_{\pi} \chi_{h} \\
0 & 0 & -2 P_{\pi} \chi_{h} & 2 \xi_{g}
\end{array}\right|=0, \tag{29}
\end{align*}
$$

where $\xi_{0}=-2 \varepsilon_{0}+\chi_{0}=\xi_{h}$ and $\xi_{g}=-2 \varepsilon_{g}+\chi_{0}=\xi_{0}-\alpha_{g}$. α_{g} is defined as

$$
\begin{equation*}
\alpha_{g}=\left(K_{g}^{2}-K_{0}^{2}\right) / k^{2}=-2 \sin ^{2} \theta_{B}\left(\cos \gamma / \cos \gamma_{3}-1\right) \tag{30}
\end{equation*}
$$

The relation still holds for three-beam GIXD:

$$
\begin{align*}
-2 \varepsilon_{0} & =\sin ^{2} \theta=\sin ^{2} \varphi-\left(K_{0} / k\right)^{2}\left(K_{0 z} / K_{0}\right)^{2} \\
& =2 \delta \sin \varphi-\delta^{2} \tag{31}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\delta=\sin \varphi-\left(\sin ^{2} \varphi-\sin ^{2} \theta\right)^{1 / 2} \tag{32}
\end{equation*}
$$

With the relations

$$
\begin{align*}
n_{0} & =K_{0} / k=\cos \theta=\cos \varphi / \cos u \tag{33}\\
n_{g} & =K_{g} / k=\left(1-\sin ^{2} \theta+\alpha_{g}\right)^{1 / 2} \\
& =\cos \varphi_{g} / \cos v \tag{34}
\end{align*}
$$

the α_{g} is simplified to

$$
\begin{equation*}
\alpha_{g}=\sin ^{2} \varphi-\sin ^{2} \varphi_{g} \tag{35}
\end{equation*}
$$

Since the polarization factor $d_{1}=\sin \left(\varphi_{g}^{\prime}+\gamma\right) \sin \theta_{B} \simeq$ $\left(\varphi_{g}^{\prime}+\gamma\right) \sin \theta_{B}$ is very small, it follows that (29) can be decomposed into two 3×3 matrix equations of the form

$$
\left[\begin{array}{ccc}
\xi_{0} & P \chi_{\bar{n}} & P \chi_{\overline{\bar{s}}} \tag{36}\\
P \chi_{h} & \xi_{0} & P \chi_{h-g} \\
P \chi_{g} & P \chi_{g-h} & \xi_{0}-\alpha_{g}
\end{array}\right]\left[\begin{array}{c}
E_{0} \\
E_{h} \\
E_{g}
\end{array}\right]=0,
$$

where

$$
P= \begin{cases}1 & \text { for } \sigma \text { polarization } \\ \cos 2 \theta_{B} & \text { for } \pi \text { polarization }\end{cases}
$$

The corresponding eigenvalues are
mode $1($ or $H) \quad-2 \varepsilon_{0}(1)=\sin ^{2} \theta_{1}=\chi_{0}-\chi_{h}$;
$\left.\begin{array}{ll}\operatorname{mode} 2(\text { or }-) & -2 \varepsilon_{0}(2)=\sin ^{2} \theta_{2} \\ \operatorname{mode} 3(\text { or }+) & -2 \varepsilon_{0}(3)=\sin ^{2} \theta_{3}\end{array}\right\}=\chi_{0}+b_{\mp} \chi_{h} ;$
where

$$
\begin{align*}
& b_{\mp}=\left[\left(1+\Delta_{g}\right) \mp\left(9-2 \Delta_{g}+\Delta_{g}^{2}\right)^{1 / 2}\right] / 2 \\
& \Delta_{g}=\alpha_{g} / \chi_{h} \tag{38}
\end{align*}
$$

As α_{g} approaches zero, $\sin ^{2} \theta_{1}=\left(\chi_{0}-\chi_{h}\right)$ and $\sin ^{2} \theta_{2}=\left(\chi_{0}+2 \chi_{h}\right)$. The eigenvectors are
mode $1 \quad D_{h}(1)=D_{0}^{(1)}, \quad D_{g}(1)=0 ;$
mode $2 \quad D_{h}(2)=-D_{0}^{(2)}, \quad D_{g}(2)=2^{1 / 2} \Delta_{-} D_{0}^{(2)} ;$
mode $3 \quad D_{h}(3)=-D_{0}^{(3)}, \quad D_{g}(3)=2^{1 / 2} \Delta_{+} D_{0}^{(3)} ;$
where

$$
\begin{gather*}
\Delta_{-}=\Delta, \quad \Delta_{+}=-1 / \Delta \tag{40}\\
\Delta=\left[\chi_{h} / 2-\alpha_{g}-\left(9 \chi_{h}^{2}-2 \alpha_{g}+\alpha_{g}^{2}\right)^{1 / 2} / 2\right] /\left(2^{1 / 2} \chi_{h}\right) \tag{41}
\end{gather*}
$$

As α_{g} approaches zero, $\Delta \rightarrow 2$.
The wavefield amplitudes inside the crystals are

$$
\begin{align*}
& D_{0}(1)=\frac{1}{2}\left(2 \sin \varphi / C_{1}\right) E_{0} \tag{42a}\\
& D_{0}(2)=\frac{1}{2} a_{-}\left(2 \sin \varphi / C_{2}\right) E_{0} \tag{42b}\\
& D_{0}(3)=\frac{1}{2} a_{+}\left(2 \sin \varphi / C_{3}\right) E_{0}, \tag{42c}
\end{align*}
$$

where

$$
\begin{equation*}
1 / a_{-}=1+r, \quad 1 / a_{+}=1+1 / r \tag{43}
\end{equation*}
$$

and
$r=\Delta^{2}\left(\frac{C_{3}}{C_{2}}\right) \frac{\sin \varphi_{g}+\left(\sin ^{2} \varphi-\sin ^{2} \theta_{2}+\alpha_{g}\right)^{1 / 2}}{\sin \varphi_{g}+\left(\sin ^{2} \varphi-\sin ^{2} \theta_{3}+\alpha_{g}\right)^{1 / 2}}$.
As φ approaches zero, $r \rightarrow 2$.
The specularly reflected wavefield amplitudes are
$E_{0}^{S}=-E_{0}+E_{0}\left(1 / C_{1}+a_{-} / C_{2}+a_{+} / C_{3}\right) \sin \varphi$
$E_{h}^{S}=E_{0}\left(1 / C_{1}-a_{-} / C_{2}+a_{+} / C_{3}\right) \sin \varphi$
$E_{g}^{S}=2^{1 / 2} E_{0}\left(\Delta_{-} a_{-} / C_{2}+\Delta_{+} a_{+} / C_{3}\right) \sin \varphi$.
The corresponding reflection intensities are

$$
\begin{align*}
& P_{0}^{S}(\varphi)=\left|E_{0}^{S}\right|^{2} /\left|E_{0}\right|^{2} \tag{46a}\\
& P_{h}^{S}(\varphi)=\left|E_{h}^{S}\right|^{2} /\left|E_{0}\right|^{2} \tag{46b}\\
& P_{g}^{S}(\varphi)=\left(\left|E_{g}^{S}\right|^{2} /\left|E_{0}\right|^{2}\right)\left(\varphi_{g} / \varphi\right) \tag{46c}
\end{align*}
$$

For a wavevector-coplanar three-beam GIXD, $\varphi=$ $\varphi_{g_{S}}=0$ and $E_{g}^{S}=0$. This trivial three-beam case with $P_{g}^{S}=0$ is therefore physically not interesting.
(B) Four-beam GIXD: Ge (000)(220)(400)(2 $2 \overline{2} 0)$ for $\lambda=2 \cdot 828 \AA$. Consider the four-beam (O, H, G, Q) case with $O=(000), H=(220), G=(400)$ and $Q=$ ($2 \overline{2} 0$). The four reciprocal-lattice points O, H, G and Q form a square. The Bragg condition for noncoplanar symmetric surface diffraction is

$$
\begin{equation*}
\lambda=2 d \sin (\pi / 4) \cos \varphi_{4}, \tag{47}
\end{equation*}
$$

where φ is the incident angle at which the four-beam GIXD takes place. From the diffraction geometry, the following useful relations are obtained:
$\sin \theta_{B}=\sin (\pi / 4) \cos \varphi_{4}$
$\cos \gamma_{4}=\tan \theta_{B} / \tan (\pi / 4)$

$$
\alpha_{g}=\alpha_{q}=-4 \sin ^{2} \theta_{B}\left(\cos \gamma / \cos \gamma_{4}-1\right)
$$

$\cos \varphi_{g}=\left[\sin ^{2} \theta_{B}+\left(2 \sin \theta_{B}-\cos \theta_{B} \cos \gamma\right)^{2}\right]^{1 / 2}$
$\cos \gamma_{\Delta}=2 \tan \theta_{B}-1$
$\sin \varphi_{\Delta}=\cos \theta_{B} \sin \gamma_{\Delta}$,
where $\gamma \rightarrow \gamma_{\Delta}, \varphi \rightarrow \varphi_{\Delta}$ as $\varphi_{g}=0$.
For simplicity, the small correlation between σ and π polarization for $\varphi \neq 0$ is ignored. The dispersion relation then takes the form

$$
\left|\begin{array}{cccc}
-\chi_{0}-2 \varepsilon_{0} & \chi_{h} & \chi_{g} & -\chi_{h} \tag{49}\\
\chi_{h} & -\chi_{0}-2 \varepsilon_{0} & -\chi_{h} & \chi_{g} \\
\chi_{g} & -\chi_{h} & -\chi_{0}-2 \varepsilon_{0}-\alpha_{g} & \chi_{h} \\
-\chi_{h} & \chi_{g} & \chi_{h} & -\chi_{0}-2 \varepsilon_{0}-\alpha_{g}
\end{array}\right|=0,
$$

where the phase relations $\chi_{h}=-\chi_{q}=-\chi_{h-g}=\chi_{g-q}$, $\chi_{g}=\chi_{h-g}(\chi>0)$ have been used. Alternatively, (49)
can be written as

$$
\begin{align*}
& {\left[\left(-2 \varepsilon_{0}-\chi_{0}+\chi_{h}\right)\left(-2 \varepsilon_{0}-\chi_{0}+\chi_{h}-\alpha_{g}\right)-\left(\chi_{h}-\chi_{g}\right)^{2}\right]} \\
& \quad \times\left[\left(-2 \varepsilon_{0}-\chi_{0}-\chi_{h}\right)\left(-2 \varepsilon_{0}-\chi_{0}-\chi_{h}-\alpha_{g}\right)\right. \\
& \left.\quad-\left(\chi_{h}+\chi_{g}\right)^{2}\right]=0 . \tag{50}
\end{align*}
$$

The eigenvalues are
mode 1 (or - -)
$\sin \theta_{1}=\left(\chi_{0}-\chi_{h}+\left\{\alpha_{g}-\left[4\left(\chi_{h}-\chi_{g}\right)^{2}+\alpha_{g}^{2}\right]^{1 / 2}\right\} / 2\right)^{1 / 2} ;$
mode 2 (or -+)
$\sin \theta_{2}=\left(\chi_{0}-\chi_{h}+\left\{\alpha_{g}+\left[4\left(\chi_{h}-\chi_{g}\right)^{2}+\alpha_{g}^{2}\right]^{1 / 2}\right\} / 2\right)^{1 / 2} ;$
mode 3 (or + -)
$\sin \theta_{3}=\left(\chi_{0}+\chi_{h}+\left\{\alpha_{g}-\left[4\left(\chi_{h}+\chi_{g}\right)^{2}+\alpha_{g}^{2}\right]^{1 / 2}\right\} / 2\right)^{1 / 2} ;$
mode 4 (or ++)
$\sin \theta_{4}=\left(\chi_{0}+\chi_{h}+\left\{\alpha_{g}+\left[4\left(\chi_{h}+\chi_{g}\right)^{2}+\alpha_{g}^{2}\right]^{1 / 2}\right\} / 2\right)^{1 / 2}$.

As φ approaches zero,

$$
\begin{align*}
& \sin \theta_{1} \simeq\left|\chi_{0}-2 \chi_{h}+\chi_{g}\right|^{1 / 2}, \\
& \sin \theta_{2} \simeq\left|\chi_{0}-\chi_{g}\right|^{1 / 2} \\
& \sin \theta_{3} \simeq\left|\chi_{0}-\chi_{g}\right|^{1 / 2}, \tag{52}\\
& \sin \theta_{4} \simeq\left|\chi_{0}+2 \chi_{h}+\chi_{g}\right|^{1 / 2} .
\end{align*}
$$

The eigenvectors are
mode $1 \quad D_{h}^{(1)}=D_{0}^{(1)}$,

$$
\begin{equation*}
D_{g}^{(1)}=D_{g}^{(1)}=\Delta_{1} D_{0}^{(1)}=\Delta_{-} D_{0}^{(1)} ; \tag{53a}
\end{equation*}
$$

mode $2 \quad D_{h}^{(2)}=D_{0}^{(2)}$,

$$
\begin{equation*}
D_{g}^{(2)}=D_{g}^{(2)}=\Delta_{2} D_{0}^{(2)}=-\left(1 / \Delta_{-}\right) D_{0}^{(2)} \tag{53b}
\end{equation*}
$$

mode $3 \quad D_{h}^{(3)}=-D_{0}^{(3)}$,

$$
\begin{equation*}
D_{g}^{(3)}=-D_{q}^{(3)}=\Delta_{3} D_{0}^{(3)}=\Delta_{+} D_{0}^{(3)} ; \tag{53c}
\end{equation*}
$$

mode $4 \quad D_{h}^{(4)}=-D_{0}^{(4)}$,

$$
\begin{equation*}
D_{g}^{(4)}=-D_{q}^{(4)}=\Delta_{4} D_{0}^{(4)}=-\left(1 / \Delta_{+}\right) D_{0}^{(4)} ; \tag{53d}
\end{equation*}
$$

where

$$
\begin{align*}
& \Delta_{-}=\left\{\alpha_{g}-\left[4\left(\chi_{h}-\chi_{g}\right)^{2}+\alpha_{g}^{2}\right]^{1 / 2}\right\} /\left[2\left(\chi_{h}-\chi_{g}\right)\right], \tag{54a}\\
& \Delta_{+}=-\left\{\alpha_{g}-\left[4\left(\chi_{h}+\chi_{g}\right)^{2}+\alpha_{g}^{2}\right]^{1 / 2}\right\} /\left[2\left(\chi_{h}+\chi_{g}\right)\right] . \tag{54b}
\end{align*}
$$

As φ approaches zero, $\Delta_{-} \simeq-1$ and $\Delta_{+} \simeq 1$.
The wavefield amplitudes inside the crystals are

$$
\begin{align*}
& D_{0}^{(1)}=\frac{1}{2}\left(2 a_{1} \sin \varphi / C_{1}\right) E_{0} \tag{55a}\\
& D_{0}^{(2)}=\frac{1}{2}\left(2 a_{2} \sin \varphi / C_{2}\right) E_{0} \tag{55b}
\end{align*}
$$

Table 1. Structure factors for germanium at room temperature

$\lambda(\AA)$	F_{000}	F_{220}^{\prime}	F_{400}^{\prime}
1.5406	245.6	173.4	142.9
2.8288	250.4	178.4	147.4
3.4644	250.4	178.4	147.4

The Debye parameter $B=0.56 \AA$ is used for the structure-factor calculation.

$$
\begin{align*}
& D_{0}^{(3)}=\frac{1}{2}\left(2 a_{3} \sin \varphi / C_{3}\right) E_{0} \tag{55c}\\
& D_{0}^{(4)}=\frac{1}{2}\left(2 a_{4} \sin \varphi / C_{4}\right) E_{0}, \tag{55d}
\end{align*}
$$

where the C 's have the same form as given in (7) and

$$
\begin{array}{ll}
1 / a_{1}=1+r_{-}, & 1 / a_{2}=1+1 / r_{-} \\
1 / a_{3}=1+r_{+}, & 1 / a_{4}=1+1 / r_{+} \tag{56}
\end{array}
$$

with
$r_{1}=\Delta_{-}^{2}\left(\frac{C_{2}}{C_{1}}\right) \frac{\sin \varphi_{g}+\left(\sin ^{2} \varphi-\sin ^{2} \theta_{1}+\alpha_{g}\right)^{1 / 2}}{\sin \varphi_{g}+\left(\sin ^{2} \varphi-\sin ^{2} \theta_{2}+\alpha_{g}\right)^{1 / 2}}$
$r_{2}=\Delta_{+}^{2}\left(\frac{C_{4}}{C_{3}}\right) \frac{\sin \varphi_{g}+\left(\sin ^{2} \varphi-\sin ^{2} \theta_{3}+\alpha_{g}\right)^{1 / 2}}{\sin \varphi_{g}+\left(\sin ^{2} \varphi-\sin ^{2} \theta_{4}+\alpha_{g}\right)^{1 / 2}}$.
The specularly reflected wavefield amplitudes are
$E_{0}^{S}=-E_{0}+\left(\frac{a_{1}}{C_{1}}+\frac{a_{2}}{C_{2}}+\frac{a_{3}}{C_{3}}+\frac{a_{4}}{C_{4}}\right) E_{0} \sin \varphi$
$E_{h}^{s}=\left(\frac{a_{1}}{C_{1}}+\frac{a_{2}}{C_{2}}-\frac{a_{3}}{C_{3}}-\frac{a_{4}}{C_{4}}\right) E_{0} \sin \varphi$
$E_{g}^{S}=\left(\frac{\Delta_{-} a_{1}}{C_{1}}-\frac{a_{2}}{\Delta_{-} C_{2}}+\frac{\Delta_{+} a_{3}}{C_{3}}-\frac{a_{4}}{\Delta_{+} C_{4}}\right) E_{0} \sin \varphi$
$E_{q}^{S}=\left(\frac{\Delta_{-} a_{1}}{C_{1}}-\frac{a_{2}}{\Delta_{-} C_{2}}-\frac{\Delta_{+} a_{3}}{C_{3}}+\frac{a_{4}}{\Delta_{+} C_{4}}\right) E_{0} \sin \varphi$.
The corresponding specularly reflected intensities are

$$
\begin{align*}
& P_{0}^{S}(\varphi)=\left|E_{0}^{S}\right|^{2} /\left|E_{0}\right|^{2} \\
& P_{h}^{S}(\varphi)=\left|E_{h}^{S}\right|^{2} /\left|E_{0}\right|^{2} \tag{59}\\
& P_{g}^{S}(\varphi)=\left(\left|E_{g}^{S}\right|^{2} /\left|E_{0}\right|^{2}\right)\left(\varphi_{g} / \varphi\right) \\
& P_{q}^{S}(\varphi)=\left(\left|E_{q}^{S}\right|^{2} /\left|E_{0}\right|^{2}\right)\left(\varphi_{q} / \varphi\right) .
\end{align*}
$$

4. Calculations

The calculation of specularly reflected intensities is based on the formulation derived in the previous section, with the structure factors at room temperature listed in Table 1 as the input data. The atomic form factors are taken from International Tables for X-ray Crystallography (1974) and extrapolated for $\lambda=$ $2.8288 \AA$ (four-beam case) and $3.4637 \AA$ (three-beam case). The structure factors for the three-beam and the four-beam cases are given in Table 1. The temperature and anomalous-scattering effects are considered in the structure-factor calculation.

In Fig. 2(a), the curves of $\sum P^{S}\left(=P_{0}^{S}+P_{h}^{S}\right)$ and the optical reflection intensity P_{op} are also shown. The latter is calculated according to the Fresnel formula

$$
\begin{equation*}
P_{\mathrm{op}}=\left|\frac{\sin \varphi-\left(n^{2}-\cos ^{2} \varphi\right)^{1 / 2}}{\sin \varphi+\left(n^{2}-\cos ^{2} \varphi\right)^{1 / 2}}\right|^{2} . \tag{60}
\end{equation*}
$$

For the two-beam (000), (220) of Ge and $3.463683 \AA$, the critical angle for $P_{\text {op }}$ is $\theta_{C}=\left(\left|\chi_{0}\right|\right)^{1 / 2}=$ 12.198 mrad , which is between $\theta_{1}(=6.5419 \mathrm{mrad})$ and $\theta_{2}(=15.9616 \mathrm{mrad})$. The P_{000}^{S} curve first decreases in the range from $\varphi=0$ to $\varphi=\theta_{1}$, and then slightly increases for $\theta_{1}<\varphi<\theta_{2}$. For $\varphi>\theta_{2}, P_{000}^{S}$ decreases monotonically. The reflection intensity P_{220}^{S} increases from zero to 0.83 at θ_{1} and decreases monotonically for $\theta_{1}<\varphi<\theta_{2}$. P_{220}^{S} drops further for $\varphi>\theta_{2}$ and reaches zero intensity for $\varphi \gg \theta_{2}$. The $P_{000}^{S}+P_{220}^{S}$ curve shows that for $\varphi<\theta_{1}$, the total intensity is specularly reflected out of the crystal. For $\theta_{1}<\varphi<\theta_{2}$, half of the total intensity is transmitted into the interior of the crystal and half is specularly diffracted. For $\varphi<\theta_{2}$, most of the intensity is transmitted into the crystal. This explanation is consistent with the calculated penetration depths t_{1} and t_{2} for modes 1 and 2, and the resultant penetration depth \bar{t} (Fig. 2d) which are defined as

$$
\begin{align*}
t_{i} & =1 /\left[4 \pi k \operatorname{Im}\left(\delta_{i}\right)\right] \tag{61}\\
\bar{t} & =\sum_{i=1,2} t_{i} \operatorname{Ex}(i), \tag{62}
\end{align*}
$$

where the excitation $\operatorname{Ex}(i)$ of mode i is

$$
\begin{equation*}
\operatorname{Ex}(i)=\sum_{g=0, h} D_{g}^{*}(i) D_{g}(i) /\left|E_{0}\right|^{2} \tag{63}
\end{equation*}
$$

In Fig. 2(d), t_{1} and t_{2} start with the values $42 \cdot 1$ and $17.3 \AA$ at $\varphi=0$ and increase to infinity at $\varphi=\theta_{1}$ and $\varphi=\theta_{2}$, respectively. The resultant penetration depth \bar{t} has an average value around $39 \AA$ for $\varphi<\theta_{2}$ and has a peak value of $132 \AA$ at $\varphi=\theta_{1}, \bar{t}$ reaches infinity at $\varphi=\theta_{2}$. Since absorption is not considered in the calculation, \bar{t} is the average extinction length.

Fig. 2(b) shows the intersection of the dispersion surface with the plane of incidence. The abscissa is the scale for the incident angle φ. This horizontal axis also represents the crystal surface in real space. The ordinate stands for the quantity $u^{(i)}$ which indicates the position of a tie point measured upward from the crystal surface. The two curves are then the dispersion curves of mode 1 and mode 2 of propagation. The straight line across the figure diagonally represents the incident wavefront. The differences between this wavefront and the dispersion curves at a given φ are the δ values.

The excitations Ex (i) of the dispersion curves of modes 1 and 2 are shown in Fig. 2(c). Both modes behave similarly except that the maximum excitation, 200%, takes place at $\varphi=\theta_{1}$ for mode 1 and at $\varphi=\theta_{2}$
for mode 2. Ex (1) and Ex (2) approach asymptotically the value of 50% for $\varphi \gg \theta_{2}$, which is the onebeam (beam 000) excitation. The excitations exceeding 100% at $\varphi=\theta_{1}$ and $\varphi=\theta_{2}$ are due to the total reflection.

The calculated results for the three-beam case, Ge (000), (220), (202), for $\lambda=3 \cdot 463683,3 \cdot 464341$ and $3 \cdot 464653 \AA$ are shown in Figs. 6, 7 and 8, respectively. The three wavelengths correspond to the values of φ_{3} chosen for the situations $\varphi_{3}<\theta_{1}, \theta_{1}<\varphi_{3}<\theta_{2}$, and $\theta_{2}<\varphi_{3}$, where $\theta_{1} \sim 6.5419$ and $\theta_{2} \sim 15.9616 \mathrm{mrad}$. The three wavelengths, $3.463683,3.464341$ and $3.464653 \AA$, are calculated according to (26) for $\varphi_{3}=$ 24,14 and 4 mrad, respectively. The corresponding φ_{Δ} are $29 \cdot 393,17 \cdot 146$ and 4.899 mrad .
The curves in Fig. 6(a) are the calculated P_{000}^{S}, P_{220}^{S}, P_{202}^{S} and $\sum P^{S}\left(=P_{000}^{S}+P_{220}^{S}+P_{202}^{S}\right)$ versus φ for $\lambda=3.463683 \AA$. Because $\varphi_{3}(=24 \mathrm{mrad})$ is far from θ_{1} and θ_{2}, the presence of the 202 reflection has very little effect on P_{000}^{S} and P_{220}^{S}. Therefore, P_{000}^{S}, P_{220}^{S} and $\sum P^{S}$ behave like those in the two-beam case just discussed. P_{220}^{S} has an appreciable intensity about 0.056 near $\varphi=27.75$ mrad. A small kink of 0.019 at $\varphi=16.5 \mathrm{mrad}$ is observable.

There are three dispersion curves shown in Fig. 6(b). The curve of mode 1 is exactly the same as that in the two-beam case. This agrees with ($37 a$). Curves 2 and 3 have the two-beam behavior of 220 and 202 reflections, respectively, as φ is far from $\varphi_{3}(=24 \mathrm{mrad})$. When φ approaches φ_{3}, modes 2 and 3 are dispersed from their two-beam curves, the dashed ones in Fig. 6(b). Resonance takes place at $\varphi=24.50 \mathrm{mrad}$, where the distance between curves 2 and 3 is minimal. Curves 1 and 2 cross over at φ_{3}. This means that modes 1 and 2 are degenerate. The wavefronts of the 000 and 202 diffracted waves are also denoted as Σ_{0} and Σ_{g} in the same figure.

Fig. 6. Three-beam $\mathrm{Ge}(000)$, (220), (202) GIXD for $3.463683 \AA$: (a) calculated intensities; (b) dispersion surface; (c) mode excitations; (d) penetration depths.

The excitation Ex (1) of mode 1 is the same as in the two-beam case (see Fig. 6c). Ex (3) has a behavior similar to that of mode 2 in the two-beam case, except that near φ_{3} the effect of the 202 reflection becomes appreciable. The small kink at $\varphi=27.75 \mathrm{mrad}$ is due to the total reflection occurring near the edge of the dispersion curve of mode 3 (see Fig. 6b). Ex (2) is almost zero for $\varphi<\varphi_{3}$. It increases near φ_{3} and then reaches its two-beam value, 50%.

The penetration depths t_{1}, t_{3} and the average depth \bar{t} behave as the t_{1}, t_{2} and \bar{t} of the two-beam case for $\varphi<\theta_{2}$. For $\theta_{2}<\varphi<27.75 \mathrm{mrad}, t_{3}$ and \bar{t} are infinite because of the total transmission of mode 3 . As φ increases, t_{3} decreases to the value of $17 \AA$, the twobeam depth. The average \bar{t} has a minimum of $199 \AA$ near 28.30 mrad. t_{2} is always infinite. This total transmission seems to accompany the inward Poynting vectors normal to the dispersion curves of modes 1 , 2 and 3.

Fig. 7 shows the calculated results for $\varphi_{3}=14 \mathrm{mrad}$ and $\lambda=3 \cdot 464341 \AA$. Because the two-beam dispersion curves (the dashed curves in Fig. 7b) of the 220 and 202 reflections do not intersect with each other, the dispersion curve of mode 3 is a line along the abscissa, in contrast to the hyperbola shown in Fig. $6(b)$ for $\lambda=3.463683 \AA$. The surface-reflected intensities P_{000}^{S}, P_{220}^{S} and $\sum P^{S}$ therefore show no steps near $\theta_{2} . P_{202}^{S}$ increases from zero at $\varphi=0$ and reaches a maximum due to the total reflection in the region ($\varphi \sim 15 \mathrm{mrad}$) between the two dashed curves. P_{202}^{S} decreases abruptly at $\varphi \simeq 16 \cdot 5 \mathrm{mrad}$ (the point where Σ_{g} touches the crystal surface, namely $\varphi=0$) and gradually tends to zero for large φ. The dispersion curves of modes 1 and 2 (Fig. $7 b$) are similar to those for $\lambda=3.463683 \AA$ shown in Fig. 6(b). The degeneracy takes place at φ_{3} for modes 1 and 2 .

Fig. 7. Three-beam $\mathrm{Ge}(000)$, (220), (202) GIXD for $3.464341 \AA:$ (a) calculated intensities; (b) dispersion surface; (c) mode excitations; (d) penetration depths.

The excitation of mode 1 remains unchanged (Fig. 7c). Ex (2) has a step at θ_{2}, while Ex (3) is almost a smooth curve with a maximum near φ_{3}. In Fig. 7(d), the penetration depths t_{1}, t_{2} and \bar{t} have similar behavior to those shown in Fig. 6(d) for $\lambda=$ $3.463683 \AA$, except that \bar{t} does not have a minimum at $\varphi=28 \mathrm{mrad} . t_{3}$ shows a slowly varying curve, starting with $16 \cdot 3 \AA$ at $\varphi=0$, reaching a maximum of $21 \cdot 5 \AA$ at φ_{3}, and decreasing towards $6 \AA$ for large φ.

For $\varphi_{3}=4 \mathrm{mrad}$ and $\lambda=3.464653 \AA$, the dispersion curves of modes 1 and 2 (see Fig. $8 b$) are similar to those in the two-beam case. The step of curve 2 occurs not at $\theta_{2}(=15.96 \mathrm{mrad})$ but at $\varphi=14.5 \mathrm{mrad}$. The dispersion curve of mode 3 is a straight line along the abscissa. Apparently, the wavefront Σ_{g} does not intersect with curves 1 and 2 . Total reflection is expected to occur in the angular range from $\varphi=0$ to $\varphi_{\Delta} \simeq$ 4.9 mrad (where Σ_{g} cuts the crystal surface). The P_{220}^{S} curve in Fig. 8(a) shows the total reflection intensities in the same range. The P_{000}^{S} shows accordingly a dip in this range. P_{220}^{S} and $\sum P^{S}$ resemble the two-beam curves of Fig. 2(a).

The excitation of mode 1, shown in Fig. 8(c), remains unchanged. The excitation of mode 2 resembles the two-beam curve, however, with a small kink feature at $\varphi_{\Delta} \simeq 4.9 \mathrm{mrad}$ and a maximum of 2.2 at $\varphi=14.5 \mathrm{mrad}$. The maximum value exceeding 200% in Ex (2) is due mainly to the definition of the excitation given in (63), where the directions of energy propagation are not considered. Mode 3 is excited in the range from 0 to 14.5 mrad , covering the total reflections of 202 and 220 reflections.

The penetration depth t_{2} in the total reflection range decreases from $90 \cdot 1 \AA$ at $\varphi=0$ towards the minimum value of $35 \AA . t_{1}, t_{3}$ and \bar{t} behave similarly to those for $\lambda=3.464341 \AA$ shown in Fig. 7(d).

Fig. 8. Three-beam $\mathrm{Ge}(000)$, (220), (202) GIXD for $3.464653 \AA$: (a) calculated intensities; (b) dispersion surface; (c) mode excitations; (d) penetration depths.

Fig. 9 shows the calculated results for the four-beam GIXD Ge (000) (220) (400) (2 $\overline{2} 0)$, where $\lambda=$ $2.828696 \AA, \quad \theta_{1}=5.3426, \quad \theta_{2}=13.0353, \quad \theta_{c}=9.9614$, $\varphi_{4}=12$, and $\varphi_{\Delta}=16.9704$ mrad. In Fig. $9(a)$, the reflected intensities P_{000}^{S}, P_{220}^{S} and $\sum P^{S}$ resemble the intensity curves shown in Fig. 7(a). Maximum, minimum and steps take place at θ_{1} for P_{000}^{S}, P_{220}^{S} and $\sum P^{S}$, respectively. P_{400}^{S} and $P_{2 \overline{2} 0}^{S}$ have relatively weak intensities. Maximal intensities at the exact four-beam position, φ_{4}, are 0.064 and 0.063 respectively for P_{400}^{S} and $P_{2 \overline{2} 0}^{S}$. At this position, P_{000}^{S} and P_{220}^{S} have also the same intensities as P_{400}^{S} and $P_{2 \overline{2} 0}^{S}$. All the intensities become null at $\varphi=\varphi_{\perp}$.

The dispersion curves of modes 1,2 and 3 follow asymptotically their two-beam dispersion curves Σ_{g} and Σ_{2}, respectively, for $\varphi<\varphi_{4}$ (Fig. 9b). Maximal dispersion occurs at φ_{4}. The dispersion curve of mode 4 is a straight line parallel to the crystal surface, with small and uniform penetration depths about $7-15 \AA$ over the whole range of φ (see Fig. $9 d$). The excitations of mode 1 for $\varphi>\varphi_{4}$ and of mode 2 for $\varphi<\varphi_{4}$ exhibit the two-beam characteristics of the 220 reflection. Modification is found only near $\varphi=\varphi_{4}$. For $\varphi>\varphi_{4}$, a small kink taking place at $\varphi=$ 16.25 mrad is seen. This is due to the total reflection occurring at the edge of the dispersion curve 2 . The excitation of mode 3 is a standard two-beam excitation with its maximum at θ_{2}. It decreases asymptotically to 50% for large φ. Mode 4 , having an almost symmetric excitation, shows no special characteristics of wave interaction. At φ_{4}, modes 1,2 and 3 have almost the same excitation. The transition from twobeam to four-beam and then to two-beam excitation is clearly shown: the two-beam (220 reflection) excitation of mode 2 dominates for $\varphi<\varphi_{4}$. It becomes four-beam excitation at φ_{4}. For $\varphi>\varphi_{4}$, the two-beam excitations of modes 1 and 3 are important.

Fig. 9. Four-beam Ge (000), (220), (400), (2 $2 \overline{2} 0)$ GIXD for $2 \cdot 8288 \AA$: (a) calculated intensities; (b) dispersion surface; (c) mode excitations; (d) penetration depths.

Fig. $9(d)$ shows the penetration depth versus φ for this four-beam case. Modes 1 and 3 , having infinite penetration depths, are totally transmitted through the crystal. Mode 2 has finite penetration depths in the total reflection ranges, i.e. $\varphi \leqslant \theta_{1}$ and $\varphi \geqslant \theta_{2}$, and becomes total transmission in between. The average penetration depth therefore behaves very similarly to the two-beam case, where a maximum (of $114 \AA$) occurs at $\varphi=\theta_{1}$.

5. Discussion and concluding remarks

In the previous sections, we have dealt with threeand four-beam GIXD along the two-beam (say H) reflection line (i.e. the Bragg condition is always satisfied by the H reflection). From the geometry, it is clear that for $\varphi_{N}=0$, with $N=3$ and 4 , the N-beam GIXD is a wavevector-coplanar multiple diffraction. The surface-reflected intensities of the reflections other than O and H are null. When $\varphi_{N}>0$, the diffraction is no longer wavevector coplanar. Surface reflections with appreciable intensities are attainable. What has been discussed previously is therefore concerned with the situation in the vicinty of the exact N-beam GIXD. Because of the nature of grazing incidence for $\varphi_{N}>0$, the dispersion surface lies above the crystal surface. This is clearly demonstrated in the calculations shown in Figs. 6, 7, 8 and 9.

Correlation between the σ - and π-polarized wavefields is another consequence of the noncoplanar diffraction. The order of magntidue of the π-polarized wavefields with respect to the σ-polarized ones can be estimated from the second row of (27). As $E_{\pi 0}=0$ for a σ-polarized incident wave, the following relation holds:

$$
d_{1} \chi_{\bar{g}} E_{\sigma g}+P_{\pi} E_{\pi h}+d_{3} \chi_{\bar{g}} E_{\pi g}=0
$$

Thus

$$
\begin{aligned}
\left(E_{\pi h}+E_{\pi g}\right) / E_{\sigma g} & \sim \sin \left(\varphi_{g}^{\prime}+\gamma\right) \sin \theta_{B} / \cos 2 \theta_{B} \\
& \sim O\left(\varphi_{g}^{\prime}+\gamma\right)
\end{aligned}
$$

$O\left(\varphi_{g}^{\prime}+\gamma\right)$ is about $0 \cdot 05-0 \cdot 001$, which is so small that it can be neglected in the calculation. Errors due to this approximation are, however, readily detectable in the calculated curves $\sum P^{S}$ for $\varphi<\theta_{1}$ shown in Figs. $6(a)$ and $7(a)$, where $\sum P^{S}$ are supposed to be unity.

In the derivation and calculations given above, we have purposely ignored absorption so as to bring out the information about extinction, though the crystal and wavelength chosen heavily involve absorption. As can be seen from Figs. $2(d), 6(d), 7(d), 8(d)$ and $9(d)$, the average extinction lengths for these particular GIXD are around $15-50 \AA$. The maximum depths at the critical angle θ_{1} are about $100-300 \AA$.

The phases about the structure factors involved, i.e. the signs for centrosymmetric crystals, are
necessary input for the calculation. According to (36) and (49), only the phase invariants of the structurefactor triplets and quartets affect the calculation.

Both the reflection intensities and mode excitations have peak values at the corresponding critical angles. This is due to the term $\left[\sin \varphi+\left(\sin ^{2} \varphi-\sin ^{2} \theta_{i}\right)^{1 / 2}\right]^{-1}$ involved in the wavefield amplitudes.
Small changes in φ_{N} cause large variations in the reflection intensities, as has already been shown in Figs. 6, 7 and 8. Experimentally, in order to detect this variation, strictly parallel and intense radiation sources with wavelength tunability are required. Use of synchrotron radiation is indispensable for carrying out the GIXD experiments (e.g. Cowan, Brennan, Jach, Bedzyk \& Materlik, 1986; Sakata \& Hashizume, 1988; Durbin \& Gog, 1989).
In conclusion, we have derived analytical expressions for reflection intensity, wavefield amplitude and accommodation for two-beam and symmetric N-beam ($N>2$) GIXD. A new geometric scheme has also been provided in this study to reveal the excitation of the dispersion surface. Numerical calculation is straightforward for symmetric N-beam GIXD and should be modified for general asymmetric cases for which the obtaining of analytical expressions for intensities and wavefield amplitudes is not guaranteed.

The authors thank the National Science Council for financial support. One of the authors (HHH) is grateful to the same organization for providing a graduate fellowship.

References

Afanas'ev, A. M. \& Melkonyan, M. K. (1983). Acta Cryst. A39, 207-210.
Aleksandrov, P. A'., Afanas'ev, A. M. \& Stepanov, S. A. (1984). Phys. Status Solidi A, 86, 143-154.

Cowan, P. L. (1985). Phys. Rev. B, 32, 5437-5439.
Cowan, P. L., Brennan, S., Jach, T., Bedzyk, M. J. \& Materlik, G. (1986). Phys. Rev. Lett. 57, 2399-2402.
Durbin, S. M. \& Gog, T. (1989). Acta Cryst. A45, 132-141.
Ewald, P. P. (1917). Ann. Phys. (Leipzig), 54, 519-597.
Fuoss, P. H., Liang, K. S. \& Eisenberger, P. (1989). In Synchrotron Radiation Research: Advances in Surface Science, edited by R. Z. Bachrach. New York: Plenum.
Hoche, H. R., Brummer, O. \& Nieber, J. (1986). Acta Cryst. A42, 585-587.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Laue, M. von (1931). Ergeb. Exakten Naturwiss. 10, 133-158.
Marra, W. C., Eisenberger, P. \& Cho, A. Y. (1979). J. Appl. Phys. 50, 6927-6933.
Sakata, O. \& Hashizume, H. (1987). Report Rlemtit, 12, 45-57. Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Japan.
Sakata, O. \& Hashizume, H. (1988). Jpn. J. Appl. Phys. 27, L1976-L1979.
Vineyard, G. H. (1982). Phys. Rev. B, 26, 4146-4159.

Acta Cryst. (1989). A45, 833-839

Determination of Crystal Structures from Poor-Quality Data Using Patterson Methods

By C. C. Wilson
Neutron Science Division, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England

(Received 13 March 1989; accepted 19 July 1989)

Abstract

It is found to be possible to solve the structures of fairly simple materials from very poor-quality diffraction data by the use of reciprocal-space Patterson methods. Data sets assessed include those from a high-resolution neutron powder diffractometer, data sets with inaccurate randomized $\left|F_{\mathrm{h}}\right|$ values, very small data sets (as few as ten reflections) and data sets with no estimates of $\left|F_{\mathrm{h}}\right|$ values given. While refinement is not always feasible from such data it is found possible to obtain atomic positions and consequent structural information with reasonable accuracy. Reasons for using Patterson rather than direct methods in such cases are discussed.

Introduction

It is not always possible to collect good-quality struc-ture-factor data from a crystallographic experiment. Problems can arise for various experimental reasons, owing, for example, to small poor-quality crystals, or to the existence of only a powder sample. The resolution of such experimental difficulties is beyond the scope of this work but rather the potential for the extraction of as much information as possible about the structure under such unfavourable circumstances will be discussed. It is in the area of garnering structural information from poor-quality data that Patterson methods have a significant advantage over direct methods, especially when the data are very scarce.
(C) 1989 International Union of Crystallography

